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Estimating membership probability in classification

Problem
o features X € X C R? and label Y € {0,1}
@ objective: an estimate of g(x) :=P{Y = 1|X = x}
e data: Dy = {(X1, Y1), -+, (Xn, Yn)}
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Estimating membership probability in classification

o features X € X C RY and label Y € {0,1}
@ objective: an estimate of g(x) :=P{Y = 1|X = x}
@ data: Dy = {(Xl, Yl), °0c0 7(X/\/, YN)}

Applications

@ finance: determine the offered rate for a credit applicant

@ handwritten character recognition: from the probability of each
symbol to the probability of several symbols

@ medicine: decide which therapy to give a patient
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Bayesian on x

One straightforward strategy is by the Bayesian rule

P{Y =1|X = x}
B P{X=x|Y =1} x P{Y =1}
CP{X=x|]Y =1} x P{Y =1} + P{X =x|Y = 0} x P{Y = 0}
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Bayesian on x

One straightforward strategy is by the Bayesian rule

P{Y =1|X = x}
B P{X=x|Y =1} x P{Y =1}
CP{X=x|]Y =1} x P{Y =1} + P{X =x|Y = 0} x P{Y = 0}

Difficult

It relies on the distributions of
Xly=1, X|y=0, Y

It is a big challenge for modeling X|Y =1 and X|Y = 0, because
commonly X is a mix of discrete and continuous random variables.
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Classification

In a typical classification model, the label prediction for x is

I(5(x)) = {(1) 925

Two parts
@ a scoring function s : X — R
@ a threshold function / : R — {0, 1}
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Estimating membership probability with two steps

The prediction for the class-1 probability conditional on feature x is
P{Y = 1|X = x} = f(s(x)) (1)

Two parts
@ a scoring function s : X — R. Well studied, e.g. NN and SVM.
@ a calibrating function f : R — [0, 1]. The focus of this paper!
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Probability calibration

@ score S € § :=s(X) and label Y € {0,1}
@ objective: an estimate of f(s) =P{Y =1|S = s}
e samples Dy = {(51, Y1), - - (Sn, Yn)} where S, = s(X,)

Wang & Li & Dang (ZJGSU & HK CityU) RPR 7/ 44



Advantages

This strategy has two obvious advantages
@ utilize nonlinear discriminant power of state-of-the-art classification

models
e simplify from d dimensions (x) to one dimension (s)

8/ 44
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Advantages

This strategy has two obvious advantages

@ utilize nonlinear discriminant power of state-of-the-art classification
models

e simplify from d dimensions (x) to one dimension (s)

Why this strategy can work?

A good scoring function is expected to satisfy:

P{Y =1 X=x1} > P{Y = 1|X = x2}, Vs(x1) > s(x2) (2)
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Calibration models

Name Model Function
Individual

Platt Logit regression Sigmoid

HistBin Histogram binning Piecewise constant
IsoReg Isotonic regression Stepwise constant
Nearlso Nearly isotonic regression Piecewise constant
LITE £1-linear trend filtering Piecewise linear
ACP Adaptive calibration Piecewise constant
SmolsoReg Isotonic splines interpolation Cubic splines
RPR(this paper) Restricted polynomial regression Polynomial
Ensemble

BBQ Ensemble of HistBin Piecewise constant
ENIR Ensemble of Nearlso Piecewise constant
ELITE Ensemble of LiTE Piecewise linear
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Experiment - Toy Data

The toy data were generted

X = (Rsin6, Rcos6)’

0 ~ Unif(0, 27)

R|Y =0 ~ Beta(2,5)

R|Y =1 ~ Beta(5,2)
Classifier: SVM with RBF kernel
(6?2 =1)
Training size: 100 for each class
Test size: 200,000 for each class

Wang & Li & Dang (ZJGSU & HK CityU)
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How to measure calibrating performance?

o Calibrating performance can be measured by
I =7l

f =P{Y =1|S = s}: the true calibrating function (unobservable)
f =P{Y = 1|S = s}: the predicted calibrating function

@ Even when the distribution of (X, Y') is known, commonly it is hard
to derive f because of the complexity of s

@ In this paper, the empirical ('true’) function is obtaine by two steps

@ All test scores are sorted in ascending order, and are partitioned into B
subsets of equal frequency, called bins.

@ For a test sample S = s, the prediction for P{Y = 1|S = s(x)} is the
fraction of positive samples in the bin that includes s.
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M1 Platt - Platt 1999

This model fits the training data with logit regression.
1

Predicted probability
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Score Empirical probability

Disadvantage: the assumption of the sigmoid functional form.
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M2 HistBin - Zadrozny and Elkan 2001

HistBin v¥ith B =25

Predicted probability
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Disadvantages: (1) not increasing; (2) not continuous
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M3 IsoReg - Zadrozny and Elkan 2002

This model fits the training data with isotonic regression.
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Disadvantage: not continuous

Wang & Li & Dang (ZJGSU & HK CityU) RPR 15 / 44



M4 NearlSO - Naeini and Cooper 2018

This model fits the training data with nearly isotonic regression.
NearISO i/vith A=2
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Disadvantages: (1) not increasing; (2) not continuous
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M5 LiTE - Naeini and Cooper 2018

This model fits the training samples with ¢; (linear) trend filtering signal
approximation.
LITE witg A=2
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Disadvantage: not increasing
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M6 ACP - Zadrozny and Elkan 2001

In the model the predicted probability for x is the percent of class 1 among
its neighboring samples.
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Disadvantages: (1) not increasing; (2) not continuous
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M7 SMOlIsoReg - Jiang et al. 2011

This model fits the training samples with increasing cubic splines

regression.
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Four requirements

increasing
continuous

universally flexible

©0 00

computationally tractable
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Estimated calibrating function from the proposed model

RPR withl k=16 and A = 103
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Qualitative comparison

Name Flexibility =~ Monotonicity = Continuousness Complexity
Individual

Platt - + + O(NT)
HistBin + - O(Nlog N)
IsoReg + + - O(Nlog N)
Nearlso o - - O(Nlog N)
LiITE o - + O(Nlog N)
ACP o - - O(Nlog N)
SmolsoReg - + + O(N?)
RPR(this paper) + + + O(N?)
Ensemble

BBQ + - - O(Nlog N)
ENIR o - - O(N?)
ELITE o - + O(Nlog N)

+:satisfied, -: unsatisfied, o:unknown.
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Framework

This model estimates the calibrating function f in the following framework

feF

N
. 1 2
iy gy 2_Uf(sn) i ()
where F is the family of continuous calibrating functions

f(s)>0, f(s)<1 } | "

F = f € C ,7
{ [s.5] f(s) is non-decreasing over [s, 3]
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Polynomial fitting

This model approximates f with a degree-k polynomial

k
f(s)=ap+ais+---+ aksk = Z 3456- (5)
=0
So
k
f(s) = Z ags’ is non-decreasing over s, 9]
=0

k
&f(s) = Z als*1 > 0,Vs € [s,3]
=1
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Model

Thus the calibration problem becomes a semi-infinite program
N

min g
acRk+1

s.t. Z as’ >0, Z a5t <1 (6b)
=0 £=0

P 2
agst — y,,] (6a)
=0

K
Z als"™1 >0, Vsels,3 (6¢)

k
> ad < A (6d)
/=0

This requirement includes uncountably infinite number of inequality
constraints.
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Lemma 1 - Nesterov 2000

Consider the polynomial p(s) = ag + a1s + - - - + axs”, s € [s, 3].

(1) When k is even, e.g. k =2k, ki € N, p(s) is nonnegative on the
closed interval [s, 3], if and only if there exist positive semidefinite real
symmetric matrices U € RUkit1)x(ki+1) and V € Rk*k satisfying

ar = (Hig+1,042, U) + (=s5Huq eolip<on, 2y

+ (s +35)Hy er1lfi<o<on -1y — Hig,elle=23, V) (7)
forall £=0,---,2k.
(2) When k is odd, k =2k; — 1, ki € N, p(t) is nonnegative on [s,3], if

and only if there exist positive semidefinite real symmetric matrices
U € RhXk and V € RFxk satisfying

ap =(—=sHg rr2lfr<on -2y + Hiy o111y, U)
+ (SHiy e42lg0<ok—21 — Hig e 1lge>1y, V) (8)

forall £ =0,---,2k — 1.
RPR 27 / 44



Hankel matrix

Let H,, , be the n x n Hankel matrix with row-i column-j element

i 1, i+j=¢
7710, otherwise.
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In case of even k

Let k1 = k/2. The coefficients a can be obtained by solving the following

semidefinite program

N T k 2
. ¢
min E aps: —
a,uv [ ¢n )%]

n=1 [¢=0

k k
s.t. ji:;ug?;z 0, EE:zMEKjg 1
(=0 (=0

lag = (—sHy, er1lyr<on —1y + Hig elge>2y, U)
+ (SHyy o1 lp<o—1) — Hig g2y, V)
VE=1,-- 2k

k
2 la <A
(=0

ac Rty v e Rh M,
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In case of odd k

Let k1 = (k + 1)/2. The coefficients a can be obtained by solving the
following semidefinite program

X 2
m | Z [Z agsf —y,,] (11a)
n=1 0
k

s.t. as’ >0, Zaﬁé <1 (11b)
£=0
tag = (Hy 41,041, U) + (—=55H r1l{p<ok, 3y
+ (§ + §)Hk1,zﬂ{1gg§2k172} — Hkl,l—lﬂ{£22}7 V>

VE=1,-- 2k —1 (11c)
k
> lad <A (11d)
£=0
a € R%, U e Rhxk y ¢ Rla—1x(am), (11e)
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Computational burden

@ Semidefinite program is a generic convex optimization that be
efficiently solved by off-the-shelf toolboxes, e.g. CVX.

@ Regularly the computational cost of this estimation is as cheap as
O(N?).
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High-degree polynomials notoriously overfit training samples

@ Nearly-perfect fit for training samples

@ Wide fluctuation between training samples
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High-degree polynomials notoriously overfit training samples

@ Nearly-perfect fit for training samples

@ Wide fluctuation between training samples

How does this model successfully suppress overfitting?

@ a sufficient implement of the requirement of increasingness

@ the smoothness from the regularization Z?:o lag] < A
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Universal flexibity

Let Py be the set of restricted algebraic polynomials with degree < k

k k
Pe:fs,s] =R | > as>0, Y a5 <1
=0 (=0 (12)

K
=0 Zéags‘e_l >0,Vs € [s, 5]
=1
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Universal flexibity

Let Py be the set of restricted algebraic polynomials with degree < k

k k
Pe:fs,s] =R | > as>0, Y a5 <1
=0 (=0 (12)

k
=0 Zéags‘e_l >0,Vs € [s, 5]
=1

Theorem (Universal flexibility)

U% 1Pk is dense in F with respect to sup-norm, i.e. for any f € F,

lim min [|f — Pelloo = 0. 13
Al Loy [ = (2] (13)
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Theorem (Universal statistical convergence)
If {kn} and {\n} satisfy

Ay T oo, ky T oo, kN/N—>0

then,
(a) {#n} is weakly universally consistent, i.e.

Jm 2L [(5(9) - Tu(e)Putas) | =0

for all distributions of (S,Y).
(b) {fn} is strongly universally consistent, i.e.

lim /(f(s) — fn(s))?u(ds) = 0, with probability 1

N—o0

for all distributions of (S,Y).

(14)

(15)

(16)
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Outline

© Experiments
@ Model comparison
@ Computational complexity
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Experiment - data

@ two data from UCI

o Adult: 14 features and 45,222 samples
e Bank Marketing: 20 features and 45,211 samples

@ two classifier

o Logit regression
e SVM with RBF kernel

hyperparameters determination: 4-fold cross-validation
training size: 200 or 500

test size: all other samples

repeatation rounds: 50
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Performance measures

K

ECE=) |pi — &l/K, (17)
i=1

MCE = P — ej 1
,max, |pi — el (18)

pi: predicted probability from training data.
e;: predicted probability with HistBin from test data ('true probability’).
K =100 in this experiment.
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Model comparison - scoring with logit regression

Adult Bank Marketing
N = 200 N = 500 N = 200 N = 500

MCE ECE MCE ECE MCE ECE MCE ECE
Platt 8.918+2.337 3.73410.989 7.9531+3.158 4.179+1.185 9.107+3.143 3.175+1.588 8.5761+3.545 4.130+1.271
Hist 11.0384-2.981 5.9314+1.690 7.04142.498 2.5041-0.834 13.922+4.083 4.858+-0.832 8.3541+2.575 3.882+0.921
Isoreg 7.500+2.318 4.07441.309 7.09142.625 2.48310.643 9.064+2.076 3.139+1.195 7.13042.800 3.0054-0.470
Nearlso 10.561+3.057 3.38511.542 8.07143.265 3.20240.893 11.267+3.045 6.4631+1.502 8.6771+1.519 3.1104+0.914
LITE 6.978+3.273 3.0734+1.032 5.45312.480 2.78940.979 7.90242.775 2.629+1.465 6.28742.295 2.899+0.844
ACP 9.875+2.917 3.6391+1.304 8.0251:3.165 3.1641+1.524 9.277+3.486 4.0341+1.146 8.1731+1.732 4.7051+1.644
SmolsoReg 6.872+2.001 2.90140.562 5.07142.321 2.72040.786 6.532+1.521 2.612+1.213 4.569+2.329 2.04410.768
RPR 4.291+1.212 1.677+0.734 3.61541.881 2.6134+0.751 4.81741.388 2.539+40.727 4.35142.289 1.952+0.901
BBQ 5.752+2.981 3.643+0.735 5.46813.264 2.557+1.266 10.820+2.405 2.938+1.179 6.641+3.510 2.329+1.069
ENIR 6.687+2.079 2.691+1.517 7.660+3.616 2.909+1.140 6.816+1.404 2.631+1.416 6.985+2.489 3.152+1.212
ELITE 6.731+1.885 2.492+1.093 4.110+2.109 2.24440.718 6.300+2.303 3.590+1.288 5.836+1.992 2.14340.666

In each cell a & b: ais the average and b is the standard deviation. In each column, the best performance is in bold and the
second best is underlined.

Wang & Li & Dang (ZJGSU & HK Cit:

RPR

39 / 44



Model comparison - scoring with SVM

Adult Bank Marketing
N = 200 N = 500 N = 200 N = 500

MCE ECE MCE ECE MCE ECE MCE ECE
Platt 8.6841+2.538 4.971+1.956 8.4421-3.866 4.043£3.795 7.061+2.990 5.500+1.438 6.536+4.277 4.5041+2.825
HistBin 11.785+3.924 7.227+4.389 6.94743.594 4.640+2.725 12.28945.759 6.4431+3.495 8.353+3.222 4.407+2.797
IsoReg 9.7324+4.062 5.3014:3.809 8.8751+3.319 4.48743.126 9.3531:4.495 5.4561-2.019 8.11343.909 5.268+1.995
Nearlso 13.381+4.558 8.29942.772 10.543+3.948 6.25943.864 11.901+4.470 4.27542.357 5.262+3.821 3.96212.548
LITE 8.7221+4.628 5.69513.552 6.83515.725 3.81743.456 8.5124+3.017 4.78542.371 6.419+5.468 5.29043.137
ACP 8.02312.898 3.017+1.154 7.033+2.796 2.628+1.069 7.4251+2.578 3.41740.997 7.170+2.775 3.3144+1.120
SmolsoReg 5.005+2.385 3.5431+1.129 5.29054+2.122 2.82011.127 5.541+2.718 2.47311.663 5.968+2.715 3.0714+1.236
RPR 4.44011.601 2.23940.932 4.3624:1.965 2.00241.219 4.70442.761 2.615+1.038 4.54941.828 2.54941.250
BBQ 8.007+4.298 4.936+2.052 7.897+4.405 4.609+2.965 6.199+4.648 4.075+1.787 6.256+3.897 3.580+1.798
ENIR 9.3141+4.981 4.3031+1.768 8.115+3.399 4.3731+2.841 7.574+2.351 4.04142.037 6.1541+2.738 3.0361+1.642
ELITE 8.292+2.113 4.53942.069 6.58312.605 2.8514+1.175 6.589+3.563 3.64840.958 4.138+2.030 2.354+1.161

In each cell a & b: a is the average and b is the standard deviation. In each column, the best performance is in bold and the

second best is underlined.
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Computational time

CPU Time
N
{IH

N
= = . E & =

! ! ! ! ! ! !

150 300 600 1200 2400 4800 9600 1920038400
N

Data: Adult. Classifier: SVM. PC: Core i5-2400 CPU ©3.10GHz and 4GB
RAM.
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© Furture directions
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Future directions

@ one classifier = multiple classifiers

@ binary classification = multi-class classification
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Thank you!

Wang & Li & Dang (ZJGSU & HK CityU) RPR 44 / 44



	Motivation
	Related work
	Methodology
	Theoretical analysis
	Experiments
	Model comparison
	Computational complexity

	Furture directions

