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The Problems

@ In social choice theory, given a set X’ of alternatives, a profile P of
votes over X', and a score-based voting rule R, one may ask the
following preference aggregation questions:

e How do we compute the score of an alternative 0 € X' in P w.r.t R?
(The score problem)

o Who is the winning alternative in P w.r.t R? (The winner problem)

o Given a threshold value h, is there an alternative whose score w.r.t P
and R is at least h? (The evaluation problem)

@ In knowledge representation and reasoning, there have been proposed
numerial often-compact preference models over combinatorial
domains of alternatives, such as:

o Answer set optimization programs (ASO-programs)
o Ceteris paribus networks (CP-nets)
o Lexicographic preference trees (LP-trees)
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Our Contributions

©@ We showed that both the winner and the evaluation problems can be
solved in polynomial time, when votes are specified as lexicographic
preference trees, and the voting rule is (2P~ +f(p))-Approval.

@ We then showed that, however, these two problems are NP-hard,
when the voting rule is b-Borda, a generalized Borda rule.
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Lexicographic Preference Trees

© An LP-tree over a set A of p binary attributes Xi,..., X, is a
complete binary tree.

@ Each non-leaf node is labeled by an attribute from A.

© Every non-leaf node has two outgoing edges, each labeled by a
distinct value in the domain of the labeling attribute.

@ Each attribute appears exactly once on each path from the root to a
leaf.

© Every leaf node is drawn as a box, not labeled.
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A Combinatorial Domain: Dinner

A combinatorial domain is given by a set of binary attributes .A. The
domain implicitly is the Cartesian product of the binary attributes.

@ Appetizer: salad (s) and soup (u)

@ Entree: beef (b) and fish (f)

© Drink: beer (r) and wine (w)

@ Domance testing is computationally easy: e.g., sbr-ubw, decided by
Appetizer on the right subtree.

The LP-trees represent total orders, orders of the leaves

Computing the rank of a given alternative is easy.

Computing the alternative at a given rank is easy too.
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Unconditional Importance and Unconditional Preference

(B>
(0)[w>7]
(A)[s>4]

(b) UI-UP
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Unconditional Importance and Conditional Preference

f:w>r

b:r>w

f:u>s

b:s>u
(b) UI-CP
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Conditional Importance and Unconditional Preference

LP-Trees
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Conditional Importance and Conditional Preference

LP-Trees
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Compactness

f>b

O

(M=)
(a) UI-UP

(d) CI-CP

@ Domance testing, computing the rank of an alternative, and

computing the alternative of a rank remain computationally easy.
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Positional Scoring Rules

© Traditionally, a positional scoring rule is given by a scoring vector
w = (wp, ..., Wp—1) such that wp > wy > ... wy_1 and wy > wp_1.

@ Two such rules we consider:
e k-Approval: (1,...,1,0,...,0) with k 1's.
o b-Borda: (2P~ —1,2p=b 2 . 1,0,...,0) where 0 < b < p.
o Due to the exponential size of these vectors, they are not the input to
our problems of study.
© The score: s, (0,P) = > sw(o,v) = >  Wy(o,). The winner is the
veP veP
alternative with the maximum score.
o k-Approval: sga(o,v) =1, if r(o,v) < k; 0, otherwise.
o b-Borda: syg(0,v) = max{2P=> — 1 —r(o,v),0}.
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The Problems We Studied

e We fix C € {UI, Cl} — {UP, CP}, and R a positional scoring rule.

@ Given a profile P of class C LP-trees, the winner problem asks to

compute arg max sg(o, P).
oeX
@ Given a profile P of class C LP-trees and a positive integer threshold h,

the evaluation problem asks to decide whether there exists an
alternative such that sg(o, P) > h.
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Results for k-Approval, Where k = 2P~ + f(p)

Theorem 1

Let f(p) be a polynomial in p such that 0 < f(p) < 2P~1 for all p > 1.
The winner problem under k-approval, where k = 2P~1 4 f(p), for any
profile of LP-trees of any class in {Ul,Cl}-{UP,CP}, can be solved in time
polynomial in the size of the profile.

@ Clearly, this problem for k-Approval, where k is a constant, is in P.

@ This problem for 2”_1-Approva| is in P. (Lang, Mengin and Xia, AlJ,
2018)

@ This problem for k-Approval is in NP-complete, when k = « - 2P,
where « is a rational number of form a/2P for any integer 1 < a < 2P,
k is not a constant, and « # 1/2. (Lang, Mengin and Xia, AlJ, 2018)
o E.g., NP-hard when k = %2” or %2".
e So where between %2” and %2” does the complexity change?
o Similarly, where between 32P and 22° does the complexity change?
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Results for k-Approval, Where k = 2P~ + f(p)

The algorithm to solve the winner problem for (2°P~% + £(p))-Approval:

© We write sk (0) and sy(o) for the scores of o € X' for any profile P
according to the (2! 4 f(p))-approval and 2P~1-approval,
respectively.

@ Compute set S of all alternatives o s.t. sk(0) > sy(0). (Poly time by

taking the union |J {o€ X :2P71 < r(o, T) < 2P~ + f(p)}.)
TeP

© Set big (bj1) to be the number of trees in P with X; being the root
with 0 > 1 (1 > 0, resp.) preference.
© Compute tuple (x1,...,Xp), each x; =0 if bjo > b; 1, x; =1 if
b,'71 > b,'70, and x; = %, O/W.
@ Pick oo = argmaxsk(0).
o€eS
@ Pick any S that instantiates tuple (x1,...,Xp).

@ Return argmax si(o).
oc{a,8}
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Results for k-Approval, Where k = 2P~ — f(p)

Theorem 2

Let f(p) be a polynomial in p such that 0 < f(p) < 2P~ for all p > 1.
The winner problem under k-approval, where k = 2P~1 — f(p), for any
profile of LP-trees of any class in {Ul,CI}-{UP,CP}, can be solved in time
polynomial in the size of the profile.
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Results for k-Approval, Where k = 2P~ — f(p)

The algorithm to solve the winner problem for (2P~ — f(p))-Approval:

© As before, we write sk (0) and sy(0) for the scores of o € X for any

profile P according to the (2°P~1 — f(p))-approval and 2P~ 1-approval,
respectively.

@ Compute set A of all alternatives o s.t. sk(0) < sy(0). (Poly time by
taking the union |J {0 € X :2P71 — f(p) < r(o, T) < 2P71})
TeP
@ If |[A| = 2P, return arg max si(0).
o€A

Q If |A] < 2P, compute set B of the top |A| + 1 alternatives w.r.t their
sy scores, and return arg max si (o).
ocAUB

o We showed B can be computed by a recursive procedure in poly time.
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Results for b-Borda

Theorem 3

The evaluation problem under 1-Borda for the class of UI-UP profiles over
p > 1 binary attributes is NP-complete.

o Note that this problem for 0-Borda, the regular Borda rule, is in P.
@ The hardness proof results from a poly time reduction from the
NP-complete problem MIN-2SAT: Given a set ® of 2-clauses
{G, ..., Cn} over a set of propositional variables {Xi,...,X,}, and
a positive integer / (I < n), decide whether there is a truth
assignment that satisfies at most / clauses in ®.

Results 17



The Reduction in Proof of Theorem 3

For a 2-clause, e.g., C; = =X, V Xy, we build the profile:

OEze  @®EEE  © 0]
WEEE @EcE 9ol
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1>0 0>1 1>0
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The Reduction in Proof of Theorem 3

For a 2-clause, e.g., C; = =X, V Xy, we build the profile:
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Proof Sketch for Theorem 3

@ The six trees are of 3 complementary pairs. E.g.,
e Xy is a dummy attribute, evaluated to 1 always.
o If o |=Xq A G, thatis, o = Xq A Xo A =X4, we have
Si5(0, {Bj, B,-’l}) =2°p 14271 41

@ The key thing is that all alternatives satisfying C; score 3-2P~1, and
that all alternatives falsifying C; score 15 - 2P~1.

@ We showed that there exists an outcome over A with 1-Borda score
at least R =15-2P~1. (m — /)4 3-2P~1 ./ if and only if there exists
an assignment over | that satisfies at most / clauses in ®.

o Therefore, MIN-2SAT =<P°Y our problem.
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Results for b-Borda

Theorem 4

Let b be an arbitrary integer such that b > 1. The evaluation problem

under b-Borda for the class of UI-UP profiles over p > b binary attrbutes
is NP-complete.

@ Hardness is reduced from the problem in Theorem 4.
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Results for b-Borda

Theorem 5

Let b be an arbitrary integer such that b > 1. The evaluation problem
under b-Borda for the class of UI-CP (CI-UP and CI-CP, respectively)
profiles over p > b binary attributes is NP-complete.

@ Hardness is reduced from the same problem for 0-Borda.
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Results Summary

Table: Complexity Results

uP cP UP cpP
Ul | P (Thms 1&2) | P (Thms 1&2) Ul | NPC (Thms 3&4) | NPC (Thm 5)
Cl | P (Thms 1&2) | P (Thms 1&2) CI'| NPC(Thm5) | NPC (Thm 5)

(a) (2P~ (p))-Approval for 0< f(p) <21

(b) b-Borda for b >0

@ If the winner problem is in P, so is evaluation.

@ If the evaluation problem is NP-complete, winner is NP-hard.
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Thank you!

@ Questions?

@ (We are hiring tenure-track assistant professors to start Fall 2020 at

School of Computing, UNF, Jacksonville, FL. Mild weather year
round, beautiful beaches, and affordable living and housing.)

St Augustine Beach

Results
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